Q1. | 2 | The | pressure p of an ideal gas is given by the expression | Use | |------|-----|---|-----| | | | $p = \frac{1}{3} \frac{Nm}{V} \langle c^2 \rangle.$ | | | | (a) | Explain the meaning of the symbol $\langle c^2 \rangle$. | | | | | [2] | | | | (b) | The ideal gas has a density of $2.4\mathrm{kgm^{-3}}$ at a pressure of $2.0\times10^5\mathrm{Pa}$ and a temperature of 300 K. | | | | | (i) Determine the root-mean-square (r.m.s.) speed of the gas atoms at 300 K. | r.m.s. speed = m s ⁻¹ [3] | | | (ii) | | ulate the temperature of the gas for the atoms to have an r.m.s. speed that is that calculated in (i). | temperature = K [3] | | | 2 | (a) | Stat | e what is meant by an <i>ideal</i> gas. | |-----|------|----------------|---| | | | A.11 | [2] | | | (b) | | product of pressure p and volume V of an ideal gas of density ρ at temperature T is n by the expressions | | | | | $\rho = \frac{1}{3}\rho < c^2 >$ | | | | | and $pV = NkT$, | | | | whe | ere N is the number of molecules and k is the Boltzmann constant. | | | | (i) | State the meaning of the symbol $< c^2 >$. | | | | | [1] | | | | (ii) | Deduce that the mean kinetic energy $\boldsymbol{E}_{\mathrm{K}}$ of the molecules of an ideal gas is given by the expression | | | | | $E_{K} = \frac{3}{2}kT$. | | | | | | | | | | [2] | | (c) | In (| orde
/e a : | for an atom to escape completely from the Earth's gravitational field, it must speed of approximately $1.1 \times 10^4 \text{m s}^{-1}$ at the top of the Earth's atmosphere. | | | (i) | to | timate the temperature at the top of the atmosphere such that helium, assumed be an ideal gas, could escape from the Earth. The mass of a helium atom is $\times 10^{-27} \mathrm{kg}$. | | | (ii) | Su
in (| temperature = K [2] ggest why some helium atoms will escape at temperatures below that calculated i). | | | | 112 | [1] | | modynamic) | | |-----------------------------|--| | | | | BARAKARAKA | | | | | | [2] | | | 10 ⁷ Pa and a | | | ed, contains
e of 290 K. | | | 2 (| a | The | ec | ua | tion | |-----|---|-----|----|----|------| | | | | | | | $pV = constant \times T$ relates the pressure p and volume V of a gas to its kelvin (thermodynamic temperature T. State two conditions for the equation to be valid. 1. (b) A gas cylinder contains 4.00×10⁴ cm³ of hydrogen at a pressure of 2.50×10⁷ Pa and a temperature of 290 K. The cylinder is to be used to fill balloons. Each balloon, when filled, contains $7.24 \times 10^3 \, \text{cm}^3$ of hydrogen at a pressure of $1.85 \times 10^5 \, \text{Pa}$ and a temperature of $290 \, \text{K}$. Calculate, assuming that the hydrogen obeys the equation in (a), (i) the total amount of hydrogen in the cylinder, amount = mol [3] | | (ii) | th | ne number of balloons that can be filled from the cylinder. | | |----|------|----|--|---------------| number =[3] | ķ.: | | Q4 | | | | | | 2 | 2 (a | a) | Explain qualitatively how molecular movement causes the pressure exerted by a gas. | Foi
Examir | | | | | | Use | | | | | | | | | 4 | | The density of poor good to temporature of 272 K and a pressure of 1.02 v 10 ⁵ Da is | | | | (1 | | The density of neon gas at a temperature of 273K and a pressure of $1.02 \times 10^5 \text{Pa}$ is $0.900 \text{kg} \text{m}^{-3}$. Neon may be assumed to be an ideal gas. | | | | | | Calculate the root-mean-square (r.m.s.) speed of neon atoms at (i) 273 K, | speed = ms ⁻¹ [3] | | | | (ii) 546 K. | | |-----|--|-----| speed = ms ⁻¹ [2] | | | (c) | The calculations in (b) are based on the density for neon being 0.900 kg m ⁻³ . Suggest the effect, if any, on the root-mean-square speed of changing the density at constant temperature. | Exa | | | | | | | | | | | [2] | | | | | | Q5. | 2 | A ra | dioa | of α -particles are frequently found to contain traces of helium gas. ctive source emits α -particles at a constant rate of $3.5 \times 10^6 \text{s}^{-1}$. The α -particles are for a period of 40 days. Each α -particle becomes one helium atom. | |-----|------|------|--| | | (a) | | eference to the half-life of the source, suggest why it may be assumed that the rate mission of α -particles is constant. | | | | | [1] | | | (b) | | helium gas may be assumed to be an ideal gas. Calculate the volume of gas that is ected at a pressure of $1.5 \times 10^5 \text{Pa}$ and at a temperature of $17 ^{\circ}\text{C}$. | | | | | | | | | | | | | | | volume = m ³ [3] | | Q6. | | | volume – III- [5] | | 2 | (a) | Sor | me gas, initially at a temperature of 27.2°C, is heated so that its temperature rises | | | ,, | to 3 | B8.8 °C. Example leading to the composition of th | | | | (i) | the initial temperature of the gas, | | | | | | | | | (ii) | initial temperature = K [2] the rise in temperature. | | | | | rise in temperature = K [1] | | (b) | The | pressure p of an ideal gas is given by the expression | | |-----|------|--|-----| | | | $p = \frac{1}{3}\rho < c^2 >$ | | | | whe | ere $ ho$ is the density of the gas. | | | | (i) | State the meaning of the symbol $< c^2 >$. | | | | | | | | | | [1] | | | | (ii) | Use the expression to show that the mean kinetic energy $^<\!E_{\rm K}\!^>$ of the atoms of an ideal gas is given by the expression | | | | | $\langle E_{K} \rangle = \frac{3}{2} kT.$ | | | | | Explain any symbols that you use. | | | | | 3 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | | | 21 401 | | | | | | | | | | | | | | | [4] | | | (c) | A cy | um-4 may be assumed to behave as an ideal gas.
vlinder has a constant volume of 7.8 × 10 ³ cm ³ and contains helium-4 gas at a
sure of 2.1 × 10 ⁷ Pa and at a temperature of 290 K. | Exa | | | Calc | culate, for the helium gas, | | | | (i) | the amount of gas, | amount = mol [2] | | | | | | | | | | | | | (ii) | the mean kinetic energy | of the atoms, | |-------|----------------------------|-----------------------| | (iii) | the total internal energy. | mean kinetic energy = | | | | internal energy = | | 2 | (a) | State what is meant by the <i>Avogadro constant N</i> _A . | |-----|-----|--| | | | [2] | | | (b) | A balloon is filled with helium gas at a pressure of 1.1×10^5 Pa and a temperature of 25° C. The balloon has a volume of 6.5×10^4 cm ³ . Helium may be assumed to be an ideal gas. | | | | Determine the number of gas atoms in the balloon. | | | | | | | | | | | | | | | | number =[4] | | Q8. | | | | : | 2 (| a) State what is meant by a <i>mole</i> . | | | | Exan
U | | | | | | | | [2] | (b) Two containers A and B are joined by a tube of negligible volume, as illustrated in Fig. 2.1. Fig. 2.1 The containers are filled with an ideal gas at a pressure of $2.3 \times 10^5 \, \text{Pa}$. The gas in container A has volume $3.1 \times 10^3 \, \text{cm}^3$ and is at a temperature of $17 \, ^\circ \text{C}$. The gas in container B has volume $4.6 \times 10^3 \, \text{cm}^3$ and is at a temperature of $30 \, ^\circ \text{C}$. Calculate the total amount of gas, in mol, in the containers. Q9. | 2 | (a) | The | e kinetic theory of gases is based on some simplifying assumptions.
Is molecules of the gas are assumed to behave as hard elastic identical spheres.
The the assumption about ideal gas molecules based on | Exam
U | |---|-----|------|--|-----------| | | | (i) | the nature of their movement, | | | | | | | | | | | | [1] | | | | | (ii) | their volume. | | | | | | | | | | | | | | | | | | 101 | ı | (b) A cube of volume V contains N molecules of an ideal gas. Each molecule has a component $c_{\mathbf{X}}$ of velocity normal to one side S of the cube, as shown in Fig. 2.1. For Examin Use Fig. 2.1 The pressure p of the gas due to the component c_{χ} of velocity is given by the expression $$pV = Nmc_x^2$$ where m is the mass of a molecule. Explain how the expression leads to the relation $$pV = \frac{1}{3}Nm < c^2 >$$ where $\langle c^2 \rangle$ is the mean square speed of the molecules. | | [3] | |------|--| | | The molecules of an ideal gas have a root-mean-square (r.m.s.) speed of $520\mathrm{ms^{-1}}$ at a temperature of 27 °C. | | | Calculate the r.m.s. speed of the molecules at a temperature of 100 °C. | | | | | | | | | | | | | | | | | | r.m.s. speed = ms ⁻¹ [3] | | Q10. | | | 2 | (a) | State what | is meant | by an | ideal gas | |---|-----|------------|----------|-------|-----------| |---|-----|------------|----------|-------|-----------| For Examiner Use | v | |-----| | | | | | 101 | (b) Two cylinders A and B are connected by a tube of negligible volume, as shown in Fig. 2.1. Fig. 2.1 Initially, tap T is closed. The cylinders contain an ideal gas at different pressures. (i) Cylinder A has a constant volume of $2.5\times10^3 cm^3$ and contains gas at pressure $3.4\times10^5 Pa$ and temperature 300 K. Show that cylinder A contains 0.34 mol of gas. | | (ii) | Cylinder B has a constant volume of $1.6 \times 10^3 \mathrm{cm}^3$ and contains $0.20 \mathrm{mol}$ of gas. When tap T is opened, the pressure of the gas in both cylinders is $3.9 \times 10^5 \mathrm{Pa}$. No thermal energy enters or leaves the gas. | For
Examiner's
Use | |-----|----------|--|--------------------------| | | | Determine the final temperature of the gas. | temperature = K [2] | | | (c) | | reference to work done and change in internal energy, suggest why the temperature ne gas in cylinder A has changed. | | | | | | | | | | | | | | | | | | | erritan. | | | | | | [3] | | ## Q11. 2 (a) The volume of an ideal gas in a cylinder is $1.80 \times 10^{-3} \, \text{m}^3$ at a pressure of $2.60 \times 10^5 \, \text{Pa}$ and a temperature of 297 K, as illustrated in Fig. 2.1. For Examiner: Use Fig. 2.1 The thermal energy required to raise the temperature by 1.00 K of 1.00 mol of the gas at constant volume is 12.5 J. The gas is heated at constant volume such that the internal energy of the gas increases by 95.0 J. | (i) | Calculate | | |-----|--|--| | | 1. the amount of gas, in mol, in the cylinder, | amount = mol [2] | | | | 2. the rise in temperature of the gas. | temperature rise = K [2] | | | | | | | | (ii) |) Use your answer in (i) part 2 to show that the final pressure of the gas in cylinder is 2.95 × 10 ⁵ Pa. | the | Fo
Exami
Us | |------|----------|---|-------|-------------------| | | | | | | | | | | | | | | | | [1] | | | (b) | | he gas is now allowed to expand. No thermal energy enters or leaves the gas.
he gas does 120 J of work when expanding against the external pressure. | | | | | St | tate and explain whether the final temperature of the gas is above or below 297 K | i. | | | | 377 | | | | | | 355 | | | | | | in | | [3] | | | Q12. | | | | | | 2 | The 2.93 | e air in a car tyre has a constant volume of $3.1\times10^{-2}\mathrm{m}^3$. The pressure of this a $\times10^5\mathrm{Pa}$ at a temperature of 17 °C. The air may be considered to be an ideal gas. | ir is | , 500 | | | (a) | State what is meant by an <i>ideal</i> gas. | | | | | | | .5 | | | | (b) | Calculate the amount of air in mal, in the ture | [2] | | | | (D) | Calculate the amount of air, in mol, in the tyre. | | | | | | | | | | | | | | | | | | | 1 103 | | | | | amount =mo | [2] | 1 | | (c) | 0.012
Calcu | pressure in the tyre is to be increased using a pump. On each stroke of the pump, and of air is forced into the tyre. Ilate the number of strokes of the pump required to increase the pressure to 10 ⁵ Pa at a temperature of 27 °C. | |-----|----------------|---| | | | number =[3] | | Q13 | - | | | 2 | (a) | An amount of 1.00 mol of Helium-4 gas is contained in a cylinder at a pressure of 1.02 × 10 ⁵ Pa and a temperature of 27 °C. | | | | (i) Calculate the volume of gas in the cylinder. | | | | volume = m ³ [2] | | | (ii) | Hence show that the average separation of gas atoms in the cylinder is approximately 3.4 × 10 ⁻⁹ m. | | b) | Cal | Calculate | | | | | |-----|------|--|-----|--|--|--| | | (i) | the gravitational force between two Helium-4 atoms that are separated by a distance of 3.4×10^{-9} m, | force = N [3] | | | | | | | (ii) | the ratio | Use | | | | | | | weight of a Helium-4 atom | | | | | | | | gravitational force between two Helium-4 atoms with separation 3.4 × 10 ⁻⁹ m | ratio =[2] | | | | | | (c) | | mment on your answer to (b)(ii) with reference to one of the assumptions of the etic theory of gases. | [2] | | | | | Q14. | 5 | Two deuterium (² ₁ H) nuclei are travelling is large compared with their diameters, the second sec | directly towards one anothe
ney each have speed <i>v</i> as il | er. When their separation
llustrated in Fig. 5.1. | For
Examiner:
Use | |-----|---|--|--|-------------------------| | | deuterium
nucleus | C | deuterium
nucleus | | | | F | Fig. 5.1 | | | | | The diameter of a deuterium nucleus is | $.1 \times 10^{-14}$ m. | | | | | (a) Use energy considerations to show
be approximately 2.5 × 10 ⁶ m s ⁻¹ in
Explain your working. | that the initial speed <i>v</i> of th
order that they may come in | e deuterium nuclei must
to contact. | | | | | | | | | | | | [3] | | | (b) | For a fusion reaction to occur, the de Assuming that deuterium behaves a of the deuterium such that the nuclei in (a). | s an ideal gas, deduce a | value for the temperatur | | | (c) | Comment on your answer to (b) . | temperature = | K [4 | 1] | | | | | [′ | 1] | | 2 | An ideal gas occupies a container of volume $4.5 \times 10^3 \mathrm{cm}^3$ at a pressure of $2.5 \times 10^5 \mathrm{Pa}$ and a temperature of 290 K. | | | | | | | |-----|---|----|--|--|--|--|--| | | (a) Show that the number of atoms of gas in the container is 2.8×10^{23} . | | | | | | | | | (b) Above of a cool was call because discussion of 4.0 × 40=10 × | ·] | | | | | | | | (b) Atoms of a real gas each have a diameter of 1.2 × 10⁻¹⁰ m. (i) Estimate the volume occupied by 2.8 × 10²³ atoms of this gas. | | | | | | | | | | | | | | | | | | volume = m ³ [2 | 2] | | | | | | | (ii | By reference to your answer in (i), suggest whether the real gas does approximate
to an ideal gas. | + | | | | | | | | | | | | | | | | | [2] | | | | | | | | | | | | | | | | Q16. | (a) | (i) | State the basic assumption of the kinetic theory of gases that leads to the conclusion that the potential energy between the atoms of an ideal gas is zero. | Exar
L | |-----|-------|---|--| | | | | | | | | [1] | | | | (ii) | State what is meant by the internal energy of a substance. | | | | | | | | | | | | | | | [2] | | | (| (iii) | Explain why an increase in internal energy of an ideal gas is directly related to a rise in temperature of the gas. | | | | | | | | | | | that the potential energy between the atoms of an ideal gas is zero. [1] (ii) State what is meant by the internal energy of a substance. [2] (iii) Explain why an increase in internal energy of an ideal gas is directly related to a | (b) A fixed mass of an ideal gas undergoes a cycle PQRP of changes as shown in Fig. 2.1. Fig. 2.1 | (i) | 1.0 | | | | | | | | | | |-------|---|--|--|------------------------------------|----------------|-------------------|--|--|--|--| | | | | change = | | J [1] | Examiner's
Use | | | | | | (ii) | Calculate the work done on the gas during the change from P to Q. | work done = | | J [2] | | | | | | | (iii) | Some energy | changes during the | cycle PQRP are sho | wn in Fig. 2.2. | | | | | | | | | change | work done on gas | heating supplied
to gas / J | increase in
internal energy / J | | | | | | | | | $P \rightarrow Q$ | | -600 | 20.10.10.00.010.10.000.01. | | | | | | | | | $Q \rightarrow R$ | 0 | +720 | X | | | | | | | | | $R \rightarrow P$ | | +480 | 3 | | | | | | | | | | Fig. | 2.2 | | l. | | | | | | | C | omplete Fig. 2 | 2.2 to show all of the | e energy changes. | | | [3] | (a) | State the basi | c assumptions of the | kinetic theory of ga | ses. | | ř. | | | | | | . , | | a prophytopological and a second secon | 10 mag 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 | | | Exa | *************************************** | | | 1633.6846.1633.6846.1633.6 | 37707737877777 | 0153557 | [4] | | | | | | | | | | Q17. 2 (b) Use equations for the pressure of an ideal gas to deduce that the average translational kinetic energy $< E_{\rm K} >$ of a molecule of an ideal gas is given by the expression $$\langle E_{\mathsf{K}} \rangle = \frac{3}{2} \frac{R}{N_{\mathsf{A}}} T$$ where R is the molar gas constant, $N_{\rm A}$ is the Avogadro constant and T is the thermodynamic temperature of the gas. [3] (c) A deuterium nucleus ²₁H and a proton collide. A nuclear reaction occurs, represented by the equation $$_{1}^{2}H + _{1}^{1}p \longrightarrow _{2}^{3}He + \gamma.$$ (i) State and explain whether the reaction represents nuclear fission or nuclear fusion.[2] | (ii) | For the reaction to occur, the minimum total kinetic energy of the deuterium nucleu and the proton is $2.4 \times 10^{-14} \text{J}$. Assuming that a sample of a mixture of deuterium nuclei and protons behaves an ideal gas, calculate the temperature of the sample for this reaction to occur. | | | | | | | | |-------|---|-------------------|--|--|--|--|--|--| | | arrideal gas, calculate the temperature of the sample for this reaction to occur. | temperature = K [3 |] | | | | | | | | (iii) | Suggest why the assumption made in (ii) may not be valid. | | | | | | | | | | | - | | | | | | | | | [1 |] | | | | | | | | | | | | | | | | | | Q18. | | | | | | | | | | 2 (a) | One assumption of the kinetic theory of gases is that gas molecules behave as if they | For | | | | | | | | | are hard, elastic identical spheres. State two other assumptions of the kinetic theory of gases. | Examiner's
Use | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | 2 | [2] | | | | | | | | | (b) | Using the kinetic theory of gases, it can be shown that the product of the pressure p and the volume V of an ideal gas is given by the expression | | | | | | | | | | $pV = \frac{1}{3}Nm < c^2 >$ | | | | | | | | | | where m is the mass of a gas molecule. | | | | | | | | | | (i) State the meaning of the symbol | | | | | | | | | | 1. N, | | | | | | | | | | [1] | | | | | | | | | | 2. <c<sup>2>.</c<sup> | | | | | | | | | | 71 March 1986 1986 1986 1986 1986 1986 1986 1986 | | | | | | | | | (ii) | Use the expression to deduce that the mean kinetic energy $\langle E_{\rm K} \rangle$ of a gas molecule at temperature T is given by the equation | | | | | | | |------|---|--|------------|--|--|--|--| | | | $\langle E_{K} \rangle = \frac{3}{2} kT$ | | | | | | | | whe | ere k is a constant. | [2] | | | | | | | | | | | | | | | | (c) | (i) | State what is meant by the internal energy of a substance. | Fi
Exam | | | | | | | | | U. | | | | | | | | [2] | | | | | | | | (ii) | Use the equation in (b)(ii) to explain that, for an ideal gas, a change in internal energy ΔU is given by | | | | | | | | | $\Delta U \propto \Delta T$ | | | | | | | | | where ΔT is the change in temperature of the gas. | | | | | | | | | | | | | | | | | | [2] | | | | | | | 10 | | [2] | | | | | | | 19. | | | | | | | | Q | :) | | mean translational kinetic energy $< E_{K}>$ of a molecule of an ideal gas is given by the ression | Exar
L | |----|------|---|-----------| | | | $\langle E_{K} \rangle = \frac{3}{2}kT$ | | | | whe | ere T is the thermodynamic temperature of the gas and k is the Boltzmann constant. | | | | (i) | Determine the temperature at which the root-mean-square (r.m.s.) speed of hydrogen molecules is equal to the speed calculated in (b) . Hydrogen may be assumed to be an ideal gas. A molecule of hydrogen has a mass of 2 u. | temperature = K [2] | | | | (ii) | State and explain one reason why hydrogen molecules may escape from Mars at temperatures below that calculated in (i). | | | | | | | | | | [2] | | | | | | • | Q20. | 2 | A student suggests that, when an ideal gas is heated from 100 °C to 200 °C, the internal energy of the gas is doubled. | | | | | | | |-----|--|----------------|--|-----|--|--|--| | | (a) (i) State what is meant by internal energy. | | | | | | | | | | (ii) | By reference to one of the assumptions of the kinetic theory of gases and your answer in (i), deduce what is meant by the internal energy of an ideal gas. | | | | | | | (b) State and explain whether the student's suggestion is correct. | | | | | | | | | | | [2] | | | | | | Q21 | • | | | | | | | | 1 | | n idea
pres | al gas has volume V and pressure ρ . For this gas, the product ρV is given by t sion | he | | | | | | | | $pV = \frac{1}{3}Nm < c^2 >$ | | | | | | | wl | nere | m is the mass of a molecule of the gas. | | | | | | | (a) State the meaning of the symbol | | | | | | | | | | (i) | N, | | | | | | | | | | [1] | | | | | | | (ii) | $\langle c^2 \rangle$. | | | | | | | | | | [4] | | | | | (b) | (b) A gas cylinder of volume 2.1 × 10 ⁴ cm ³ contains helium-4 gas at pressure 6.1 × 10 ⁵ Pa and temperature 12°C. Helium-4 may be assumed to be an ideal gas. | | | | | | | |------|---|-------|--|-----------------------|--|--|--| | | (i) Determine, for the helium gas, | | | | | | | | | | 1. | the amount, in mol, | | | | | | | | 2. | amount = mol [3 the number of atoms. | | | | | | | | | number =[2 |] | | | | | (ii) | Calo | culat | ite the root-mean-square (r.m.s.) speed of the helium atoms. | For
Examine
Use | | | | | | | | r.m.s. speed = ms ⁻¹ [3] | | | | | | 2 | | | | | | |-----|---|-------|---|-------------------|--| | | | | $pV = \frac{1}{3}Nm < c^2 >$ | Examiner's
Use | | | | where <i>m</i> is the mass of one molecule of the gas. (a) State the meaning of the symbol | | | | | | | | | | | | | | | (i) | N, | | | | | | | [1] | | | | | | (ii) | <c<sup>2>.</c<sup> | | | | | | | [1] | | | | | (b) | The | product <i>pV</i> is also given by the expression | | | | | | | pV = NkT. | | | | | | | duce an expression, in terms of the Boltzmann constant k and the thermodynamic perature \mathcal{T} , for the mean kinetic energy of a molecule of the ideal gas. | [2] | | | | (c) | А су | linde | contains 1.0 mol of an ideal gas. | | | | | (i) | | volume of the cylinder is constant. ulate the energy required to raise the temperature of the gas by 1.0 kelvin. | energy = J [2 | 21 | | | | (ii) | The | volume of the cylinder is now allowed to increase so that the gas remains a | | | | | , | cons | tant pressure when it is heated.
ain whether the energy required to raise the temperature of the gas b | | | | | | | elvin is now different from your answer in (i). | 9 | [2 | 01 | | ## Q23. | 2 | (a) | (i) | State what is meant by the internal energy of a system. | For
Examin
Use | | | |-----|--|--------------|--|----------------------|--|--| | | | (ii) | Explain why, for an ideal gas, the internal energy is equal to the total kinetic energy of the molecules of the gas. | | | | | | | | [2] | | | | | (b) | The | e me | an kinetic energy $\langle E_{K} \rangle$ of a molecule of an ideal gas is given by the expression | on | | | | | | | $\langle E_{K} \rangle = \frac{3}{2}kT$ | | | | | | wh | ere <i>k</i> | is the Boltzmann constant and ${\mathcal T}$ is the thermodynamic temperature of the g | as. | | | | | A cylinder contains 1.0 mol of an ideal gas. The gas is heated so that its temperatur changes from 280 K to 460 K. | | | | | | | | (i) | Ca | Iculate the change in total kinetic energy of the gas molecules. | change in energy = J | [2] | | | | (ii) | S | buring the heating, the gas expands, doing $1.5 \times 10^3 \mathrm{J}$ of work. Itate the first law of thermodynamics. Use the law and your answer in (i) to etermine the total energy supplied to the gas. | |------|-----|---| | | 5.5 | | | | 7. | | | | | | | | | | | | | | | | | total energy = J [3] | | | | | | Q24. | | | | 2 | (a) | Explain what is meant by the Avogadro constant. | | | | | | | | [9] | | | (b) | Argon-40 (⁴⁰ ₁₈ Ar) may be assumed to be an ideal gas. | | | (2) | A mass of 3.2 g of argon-40 has a volume of 210 cm ³ at a temperature of 37 °C. | | | | Determine, for this mass of argon-40 gas, | | | | (i) the amount, in mol, | amount = mol [1] | (ii) the pressure, (iii) the root-mean-square (r.m.s.) speed of an argon atom. r.m.s. speed = $$ms^{-1}$$ [3] ## Q25. A constant mass of an ideal gas has a volume of 3.49×10^3 cm³ at a temperature of 21.0 °C. When the gas is heated, 565 J of thermal energy causes it to expand to a volume of 3.87×10^3 cm³ at 53.0 °C. This is illustrated in Fig. 2.1. Fig. 2.1 (a) Show that the initial and final pressures of the gas are equal. | (b) | The pressure of the gas is 4.20×10^5 Pa. | | | | | | | | | |-----|---|--|--|--|--|--|--|--|--| | | For this heating of the gas, | | | | | | | | | | | (i) | calculate the work done by the gas, | work done = J [2] | | | | | | | | | | (ii) | use the first law of thermodynamics and your answer in (i) to determine the change in internal energy of the gas. | change in internal energy = | | | | | | | | | (c) | | plain why the change in kinetic energy of the molecules of this ideal gas is equal to the ange in internal energy. | [3] | | | | | | | | | 3 (a) State what is meant by an <i>ideal</i> gas. | |--| | [1 | | (b) A storage cylinder for an ideal gas has a volume of 3.0×10 ⁻⁴ m ³ . The gas is at a temperature of 23°C and a pressure of 5.0×10 ⁷ Pa. | | (i) Show that the amount of gas in the cylinder is 6.1 mol. | | | | | | | | [2 | | (ii) The gas leaks slowly from the cylinder so that, after a time of 35 days, the pressure has reduced by 0.40%. The temperature remains constant. Calculate the average rate, in atoms per second, at which gas atoms escape from the cylinder. | | | | | | | | | | rate = s ⁻¹ [4] |